

Chapter 1: General Introduction

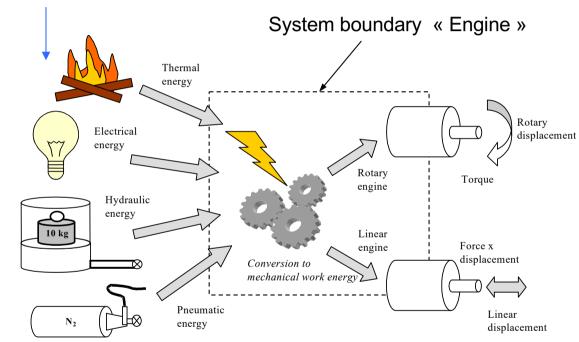
Learning Objectives of Chapter 1 - Introduction

- know the names and functionalities of the main mechanical components
- ⇒ know the **operating principles** of Internal Combustion Engines
- ⇒ know the **flows** (5) acting during operation
- ⇒ know the different types of usual engines : 2-stroke, 4-stroke, Diesel, Otto…

Content Chapter 1

Introduction

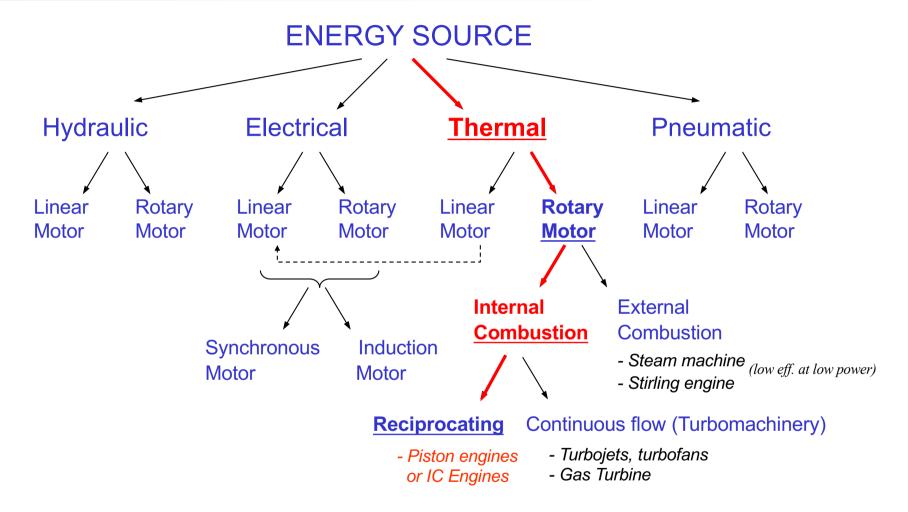
- Description of the main components
- Operating principle
 - Mechanics of the reciprocating engine
 - Engine cycles
 - Flows inside reciprocating engines
- Classification
 - Reciprocating engine families
 - Kinematics of the piston



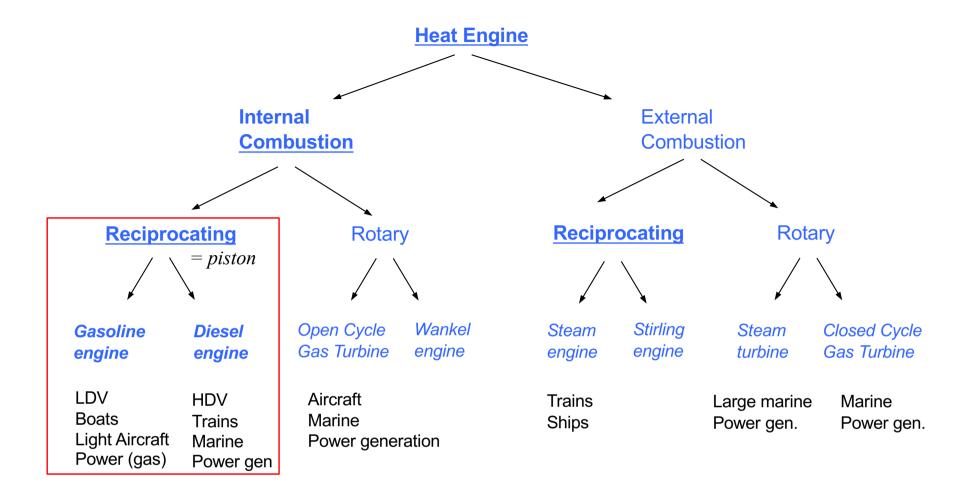
Engine = generator of mechanical energy (torque, work)

■ System inlet ⇒ 1 energy source

Example:


- **⇒ Thermal**
- ⇒ Electrical
- ⇒ Hydraulic
- ⇒ Pneumatic

■ System **outlet** \Rightarrow 1 mechanical work (E_{mec}) \Rightarrow Force (N) or Torque (Nm)


The main requirement is to generate PRESSURE, to push a piston.

ICE have no heat exchangers unlike ST, GT cycles => simpler and more efficient

Course focus = thermal reciprocating ICE *or* piston engines

Advantages ICE	Disadvantages ICE
Average T is lower than in GT, ST, but max T is high for a short time => higher thermal efficiency	Vibrations
For high thermal efficiency, (average) working pressure stays moderate => lower weight-to-power ratio than ST cycle => allows downsizing to low power (< 1 kW)	Needs clean (expensive) fuels

Ranges

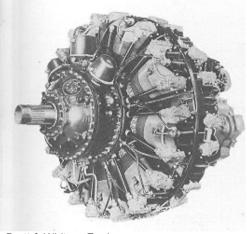
Stroke, Hub

@crankshaft

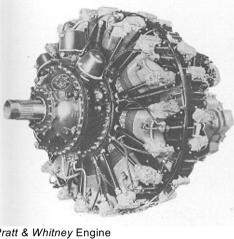
	No. of cylinders	Bore (\phi)	(air) displacement per cylinder	Eff. Power [kW]	Speed [rpm]	Length	Mass
Min	1	6 mm	0.16 cm ³	0.02	> 30'000	≈ 4 cm	14 g
Max	≈ 27	> 1 m	> 2 m ³	75'000	≈ 60	> 20 m	> 2000 t

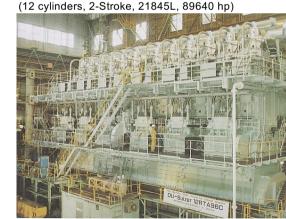
Application :

- \Rightarrow Transport
 - Motorcycles, Cars, Trucks, Ships, Railroad, Airplanes, Helicopters
- ⇒ Electric power
 - Generators, Power plants (including cogeneration)
- ⇒ Machines
 - Off-road vehicles, agricultural, home use
- ⇒ etc...



Application examples

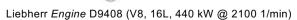

hand tools


small plane

Pratt & Whitney Engine (18 cylinders, 45.9 L, 2500 hp)

SULZER-WARTSILA Engine

motorbike


(2 cylinders,996 cm³,123HP

Large cogeneration/power

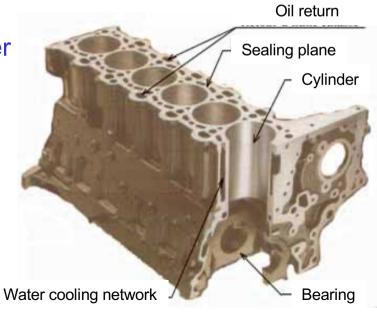
BMW 318i Engine (4 cylindres, 1.8L, 125 hp)

car

'small' cogeneration

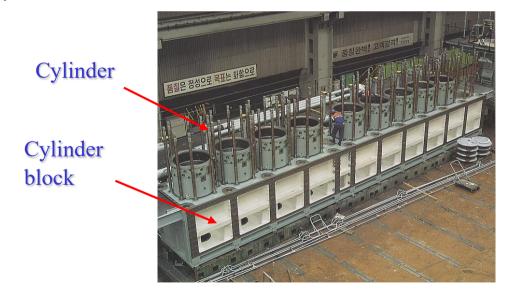
Content Chapter 1

- Introduction
- Description of the main components
- Operating principle
 - Mechanics of the reciprocating engine
 - Engine Cycles
 - Flows inside reciprocating engines
- Classification
 - Reciprocating Engines Families
 - Kinematics of the piston


Glossary of component terms in other languages

ENGL	FR	D	IT	ESP	NL
2-stroke	à 2 temps	2-Takt	a due tempi	de dos tiempos	2-takt
4-stroke	à 4 temps	4-Takt	a quattro tempi	de cuatro tiempos	4-takt
bearings	paliers	Lager	cuscinetti	rodamientos	lagers
bore	alésage	Bohrung	alesaggio	diametro	boring
camshaft	arbre à cames	Nockenwelle	albero a camme	arbol de levas	nokkenas
connecting rod	bielle	Pleuelstange	biella	biela, varilla	drijfstang
crankcase	carter	Kurbelgehaüse	carter, basamento	carter	carter
crankpin	maneton	Kurbelzapfen	peron di manovella	rodaje del cigüenal	kruktap
crankshaft	arbre villebrequin	Kurbelwelle	albero motore, a gomito	cigüenal	krukas
cylinder head	culasse	Zylinderkopf	testata del motore	culata	cylinderkop
flywheel	volant d'inertie	Schwungrad	volano	volante	vliegwiel
piston	piston	Kolben	pistone	piston	piston
scavenging (port)	(port à) balayage	Spül(öffnung)	luce di lavaggio	lumbrera de barrido	spoel (poort)
throttle valve	vanne papillon	Drosselventil/klappe	valvola a farfalla	valvula de mariposa	gasklep
torque	couple	Drehmoment	coppia, torsione	par, torsion	koppel, torsie, draaimoment

1. Cylinder Block


- Joins all components together
- Basis for the fitting of auxiliary components (pumps, AC, alternator,...)
- Fitting of the gearbox
- Fitting of engine supports (=fuel/water/oil pumps,..)
- Integrating the crankcase
- Defines total cyl. volume, thus power
- Cast iron or aluminium

2. Cylinders

- usually directly bored in the cylinder block; *or* else a separate part from the cylinder block (for big cylinders)
- task 1 : guide the (vertical) piston motion
- task 2 : heat release function

Main components

3. Piston

- = moving boundary of the combustion system
- transmits the gas force
- undergoes huge mechanical & thermal stresses!

 P_{max} : $\Rightarrow \approx 70$ bars (naturally aspirated gasoline engines: inlet at P_{atm})

⇒ ≈ 220 bars (turbocharged Diesel engines)

maintains the piston rings

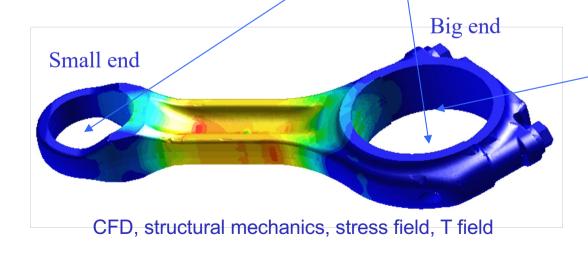
3 rings: 1. heat protection 2. sealing 3. oil film scraping



Large 2-stroke

Usually:

Piston of a Wankel rotary engine (exceptional case)



Main components

4. Connecting rod

tranmits the gas force to the crankshaft

- connects the piston to the crankshaft
- under v. high mechanical cycle fatigue
 - $\sigma_{\text{compressive}}$ (due to gas pressure forces P_{gas})
 - σ_{tensile} (due to inertial forces F_{inertia})
- small end: attached to the piston pin
- big end: connected to the crankshaft

Assembly Piston - Ring - Connecting rod

3000 rpm = 50 Hz => every 20 ms a compression/tension cycle!

Main components

5. Crankshaft

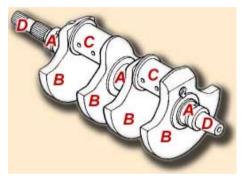
Enables the transformation of the linear oscillating motion of the

piston into rotary motion on the power shaft (wheels).

main bearings ⇒ (A)

• big-end bearing \Rightarrow crank pin (**C**)

• counterweight \Rightarrow (B)

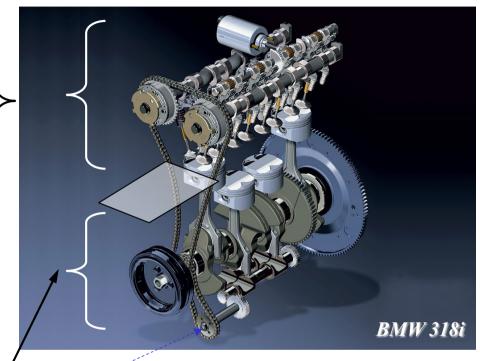

engine outlet torque ⇒ shaft (D)

6. Flywheel (or inertia wheel)

used as storage device for kinetic energy

Task 1 : reduces the rpm fluctuations

Task 2 : enables the engine start-up

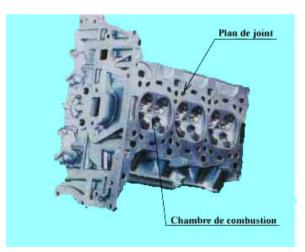

Main components – overview so far (bottom engine)

Top engine

- Cylinder head (p.17)
- Valve train system (p.18)

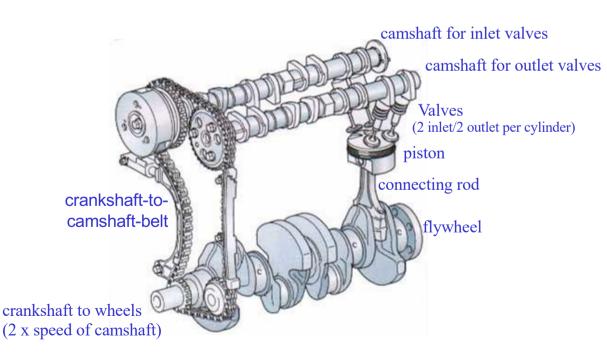
Bottom engine (p.11-15)

- Cylinder block
- Piston
- Connecting rod
- Crankshaft
- Balancer shaft (opt.)
- Flywheel
- Oil pump


6 in-line cylinder

7. Cylinder head: = seat of

- Intake and exhaust ports (2-stroke)
- Valve train system (pp.18, 20,...) (4-stroke)
- Injection system (fuel, air)
- Ignition system (e.g. spark; not with Diesel)
- Cooling of hot components
- Gives the geometry (design) of the combustion chamber (=> controls the combustion, hence the engine and the associated polluting emissions)
- Head gasket (for gases (air, fuel, exhaust), water and oil sealing)



8. Valve train system (part of 7. the Cylinder head)

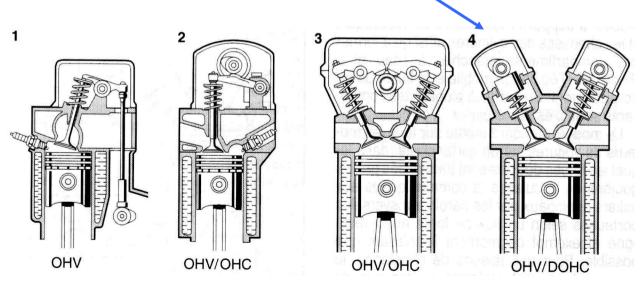
- opening/closing via camshaft (4-stroke, p.19) or via ports (2-stroke, p.20)
- valves (incl. springs) or orifices
- distribution control (rocker arm, pushrods, lifters) p. 21
- driving of auxiliaries & accessories p. 21
- variable valve driving system (optional) p. 22-23

9. Camshaft

OHV: overhead valve

ensures the induction of fresh air (intake valve)
 and the expulsion of combustion gases (exhaust valve)

⇒ given by the cam **profile**


Camshaft position:

Lateral : (1)

Overhead camshaft OHC (end pivot rocker): (2)

Overhead camshaft (center pivot rocker): (3)

Overhead camshaft (direct-acting): (4)

Cam

Camshaft

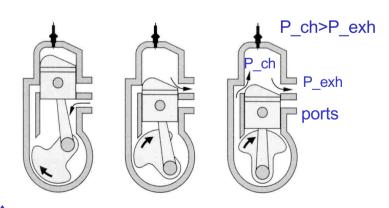
Valve Spring

Cylinder Head

Valve

10a. Valves

- ensure the fluid transfer (air)
- seat of gases sealing
- Mechanical return system
 - with spring
 - with cam (desmodromic)
- Pneumatic valve timing



Desmodromic (Ducati) — valves bound to the camshaft to avoid gripping of springs

10b. Ports (scavenging ports)

- =alternative to the camshaft driving system
- scavenging ports in the cylinder
- available only on 2-Stroke engines
- slip of fuel / exhaust => efficiency↓, emissions↑

(blue smoke; lubricant oil)

2-Stroke engine with compression in crankcase

11. Distribution control:

- To drive the camshaft system
 - \Rightarrow by chain *or* belt (incl. tensioner)
 - \Rightarrow by gear
- To drive auxiliaries and accessories
 - ⇒ Pumps : water, oil, fuel
 - ⇒ Alternator (=>on-board electricity)
 - ⇒ Compressors : air, air-conditioning

 $\omega_{M} = 2 \cdot \omega_{AAC}$ R1 R2

Outlet valve

M : Crankshaft

AAC: Camshaft

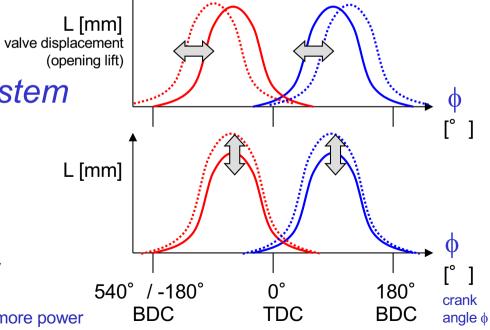
R1: Alternator

Intake valve

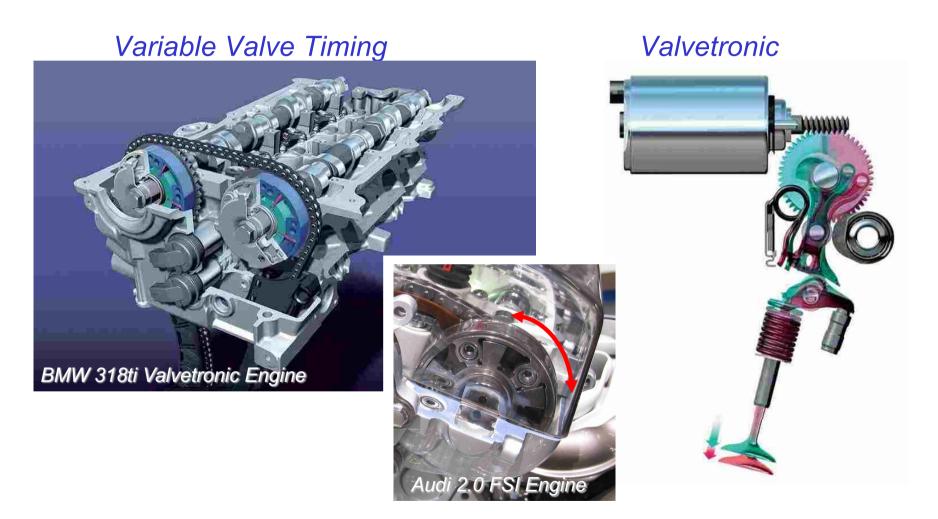
R2: Compressor

E: Belt idler roller

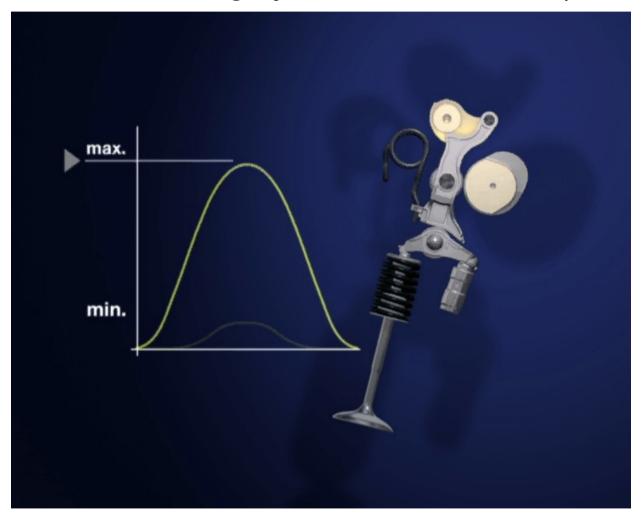
T: Belt tensioner roller


(Opt.) Variable valve timing system

- phase shift of the cam profile <
- variable valve lift
- phase shift + variable lift, cf. p.23


Duration (=amount) of fuel injection, air intake => more power

Main components – valves


Variable valve timing system: examples

Main components – valves

Variable valve timing system: Valvetronic (BMW)

Content Chapter 1

- Introduction
- Description of the main components

Operating principle

- Mechanics of the reciprocating engine
- Engine cycle
- Flows inside reciprocating engines

Classification

- Reciprocating Engines Families
- Kinematics of the piston

Definitions, Terminology

D: Bore

L: Stroke

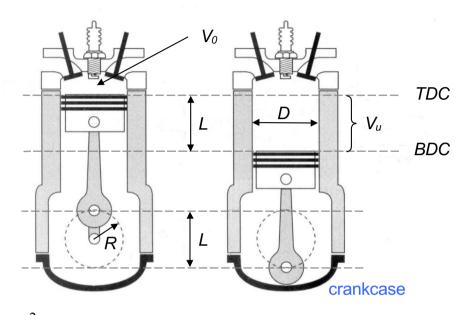
 $R: \text{ crank radius} \Rightarrow R = \frac{L}{2}$

TDC: Top dead center

BDC: Bottom dead center

 V_0 : clearance volume $\Rightarrow V_0 = V_{TDC}$

 V_U : displaced volume $\Rightarrow V_u = L \cdot \frac{\pi \cdot D^2}{4}$ = swept volume by the piston


 V_C : maximum cylinder volume $\Rightarrow V_C = V_{BDC} = V_0 + V_u$

 V_{cvl} : engine displacement \Rightarrow

n : number of cylinders

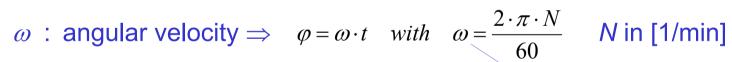
 ϵ : Compression ratio \Rightarrow

=> key for efficiency

$$V_{cyl} = n \cdot V_u$$

$$\varepsilon = \frac{V_C}{V_0} = \frac{V_u + V_0}{V_0}$$

Mechanics of the reciprocating engine


 φ : crank angle ($\varphi_{c,a}$): represents time (motion)

/ : connecting rod length

 λ : ratio of connecting rod radius/length $\Rightarrow \lambda = \frac{R}{l}$ (0.2-0.3)

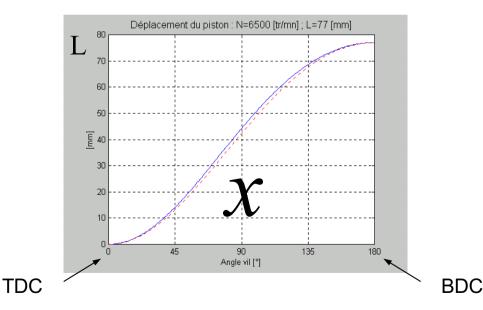
$$x = R \cdot \left(1 - \cos(\varphi) + \frac{\lambda}{2} \cdot \sin^2(\varphi)\right) = R \cdot \left(1 - \cos(\varphi) + \frac{\lambda}{4} - \frac{\lambda}{4} \cdot \cos(2\varphi)\right)$$

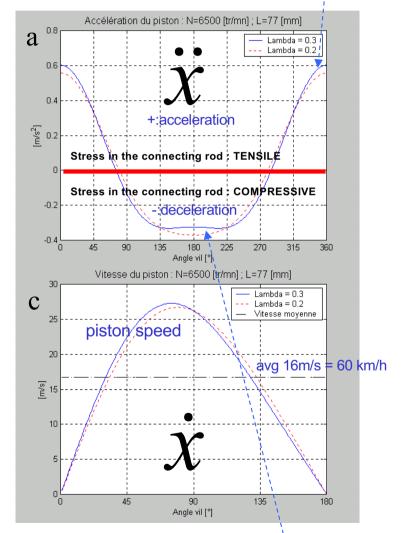
c: instantaneous piston velocity $\Rightarrow \dot{x} = c = R \cdot \omega \cdot \left(\sin(\omega t) + \frac{\lambda}{2} \cdot \sin(2\omega t) \right)$

 c_{mean} : mean piston velocity \Rightarrow $c_{moy} = \frac{2 \cdot R \cdot \omega}{\pi} = \frac{L \cdot \omega}{\pi} = \frac{L \cdot N}{30}$

a: piston acceleration \Rightarrow $\ddot{x} = a = R \cdot \omega^2 \cdot \left(\cos(\omega t) + \lambda \cdot \cos(2\omega t)\right)$

Mechanics of the reciprocating engine


max tensile stress at TDC (low load) and high engine speed ;


 \boldsymbol{x} , \boldsymbol{c} and \boldsymbol{a} depend on λ

Example : L = 77 mm = 2R (R = 38.5 mm)

 $R = \lambda . l$ $\lambda_A = 0.3 \Rightarrow l_A = 128 \text{ mm}$

 $\lambda_{\rm B} = 0.2 \Rightarrow I_{\rm B} = 192 \text{ mm}$

max compressive stress at BDC (high load) and low engine speed

- The cycle in reciprocating engines (for both 2- and 4-stroke)
 The cyclic operation constantly renews the fresh mixture into the cylinder
 ⇒ sequence of successive events called *strokes*
 - 1) Gas intake : intake (induction) stroke (=> takes a certain time)
 - draw fresh gas into the cylinder
 - inducted gas: air (Diesel) *or* flammable mixture (air + fuel: Otto)
 - at start: combustion chamber = <u>open</u> system by the **intake** port/valve
 - open for a very short time only
 - at end: combustion chamber = <u>closed</u> and sealed system

The cycle in reciprocating engines

The cyclic operation constantly renews the fresh mixture into the cylinder

- ⇒ sequence of successive events called *strokes*
- 2) Compression of the gases: compression stroke (<u>isentropic</u>)
 - compression (p) by piston motion towards TDC; fully closed system
 - (a certain P^{\uparrow} is needed to start the combustion process => $P^{\uparrow\uparrow}$)
 - increase of pressure and temperature of the working fluid
 - in case the inducted fluid is only fresh air, the fuel injection takes place at the end of the compression stroke (= DIESEL cycle)
 - gasoline (Otto): compression of the mixture air + fuel

The cycle in reciprocating engines

The cyclic operation constantly renews the fresh mixture into the cylinder

⇒ sequence of successive events called *strokes*

- 3) Combustion of the mixture followed by expansion: expansion / power stroke
 - combustion starts as soon as the mixture has the suitable conditions for ignition

```
OTTO cycle: ignited by an electric arc (v. fast - homogeneous)
```

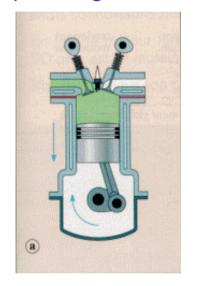
DIESEL : auto-ignition (slower – heterogeneous)

- heat energy release ⇒ increase in P (depends on Δu (internal energy) and M_F)
- the high pressure increase of the gases will produce a force on the piston and push it down forcing the crank to rotate ⇒ expansion / power stroke: generates WORK
- this stroke is the only one which generates a positive work (E_e^+) on the crank

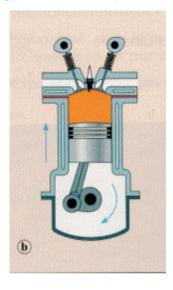
The cycle in reciprocating engines

The cyclic operation constantly renews the fresh mixture into the cylinder

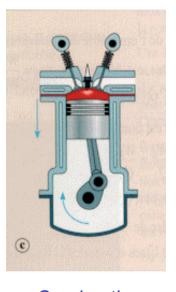
⇒ sequence of successive events called *strokes*

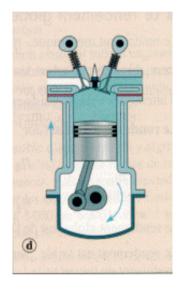

4) Expulsion of burnt gases: exhaust stroke

- burnt gases are swept out to renew the working fluid (fresh mixture)
- at start: combustion chamber = open system by the **exhaust** valve/port
- at end: exhaust valve closes (and the combustion chamber is reopened at the inlet valve)
- next cycle starts again ⇒ intake stroke, compression stroke, and so on...



Operating principle 4-stroke


- 4-Stroke cycle complete overview
 - operating according to the 4 preceding consecutive strokes:


Intake

Compression

Combustion + Expansion

Exhaust

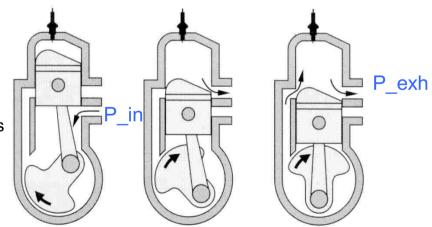
- each cylinder requires four strokes of its piston two revolutions of the crankshaft - to complete the sequence of these 4 events
 - 1st revolution = intake (descend of the piston) + compression (rise of the piston)
 - 2nd revolution = expansion (descent of the piston) + exhaust (rise of the piston)
- use of a valve timing system is mandatory ($\omega_{CAMSHAFT} = 0.5 \cdot \omega_{CRANKSHAFT}$)

Operating principle 2-stroke

- **2-stroke cycle** (invented D. Clark 1878)
 - operating with 1 only crankshaft revolution (intake + exhaust in 1 motion)

compression stroke ⇒ when the piston rises

combustion & expansion ⇒ when the piston descends


- the renewal of fresh charge is only feasible close to the BDC
 - whenever ports are uncovered, compressed fresh mixture (below: in the crankcase) flows into the cylinder and the scavenging process sweeps out the burnt gases

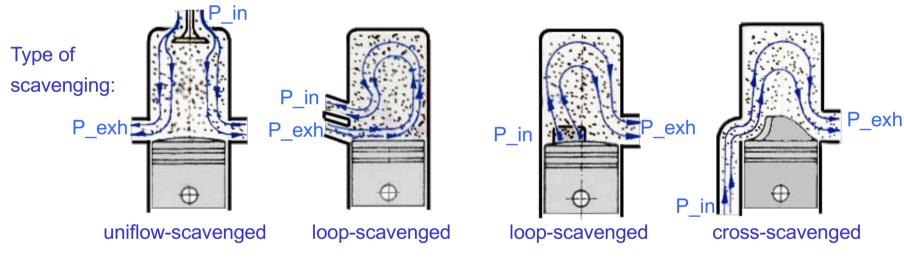
In theory, 2-stroke power = twice 4-stroke power. In real, power increase is only +30%, due to :

- (i) the reduced effective expansion stroke and
- (ii) increased heating due to the increased number of power strokes which limits the maximum speed (overheating).

This requires greater cooling and lubricating oil.

In a 4-stroke, for every 2nd revolution the cylinder has time to cool.

mandatory condition for operation:


 $P_{INTAKE} > P_{EXHAUST}$

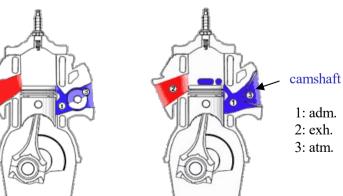
Operating principle 2-stroke

2-stroke cycle

• requires a scavenging process in order to transfer the fresh mixture from the intake to the exhaust port, minimizing the losses:

 $P_{INTAKE} > P_{EXHAUST}$

- possibility to use reed*-valve to avoid:
 - the discharge of burnt gases into intake ports
 - to loose fresh fuel charge into the crankcase


*overpressure-release, anti-backflush

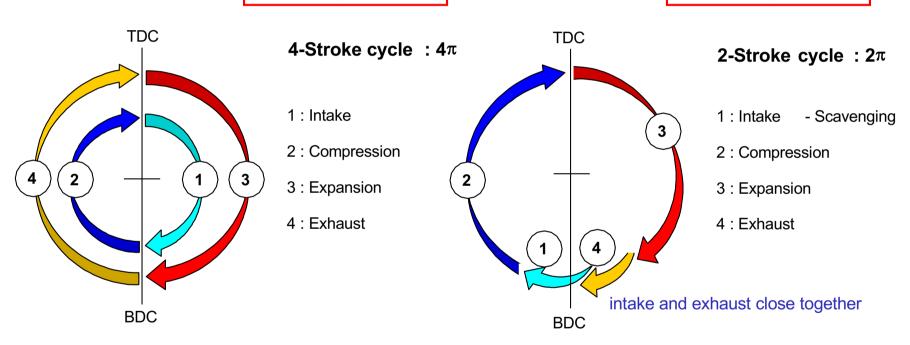
2-stroke: higher power from a same size engine, hence more compact.

No valves + valve actuation, hence mechanically simpler, cheaper and easier maintenance.

Torque on crankshaft also more uniform.

- 34 -

Operating principle: summary


Summary: cycle of reciprocating engines

4-Stroke:

$$-360^{\circ} < \varphi < +360^{\circ}$$

2-Stroke:

$$-180^{\circ} < \varphi < +180^{\circ}$$

- Lower specific power (1 power stroke per 2 revolutions)
 (only 1 combustion every 2 revolutions)
- + : Driveability ∅ , Reliability ∅, Emissions №

Trade-off between gases evacuation and losses of fresh mixture in exhaust pipe

- : Emissions ∅, Operating range №
- + : Specific power < (1 power stroke per 1 revolution)

Comparison overview 4-stroke / 2-stroke

	4-stroke	2-stroke	
Torque	Less uniform. Heavier flywheel	More uniform. Lighter flywheel	
Engine size/weight	Heavier (only 1 power stroke per 2 revolutions)	<u>Lighter</u> , more <u>compact</u> , for the same power	
Cooling need, wear, Lubrication need	Less	More	
Intake	Valves + actuators	Ports	
Cost	Higher (weight, valve system)	Lower	
Volumetric efficiency	Higher (exhaust stroke revolution)	Lower (less time for intake)	
Thermal efficiency	Higher (more time to cool)	Lower (higher avg. T, thus less ΔT)	
Part load efficiency	Higher	Lower	
Uses	Cars, trucks, buses, tractors, power generation (efficiency is important)	Scooters, (motorcycles), large ships (cost, weight, compactness are important)	

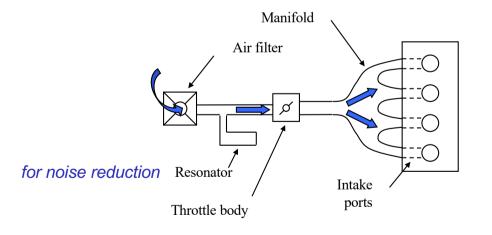
(5) Flows inside reciprocating engines:

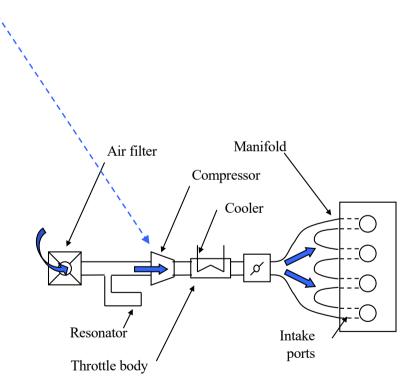
1) Intake circuit ⇒ AIR

2) Fuel circuit ⇒ GASEOUS or LIQUID FUEL

(or both: dual fuel engine: gasoline + NG)

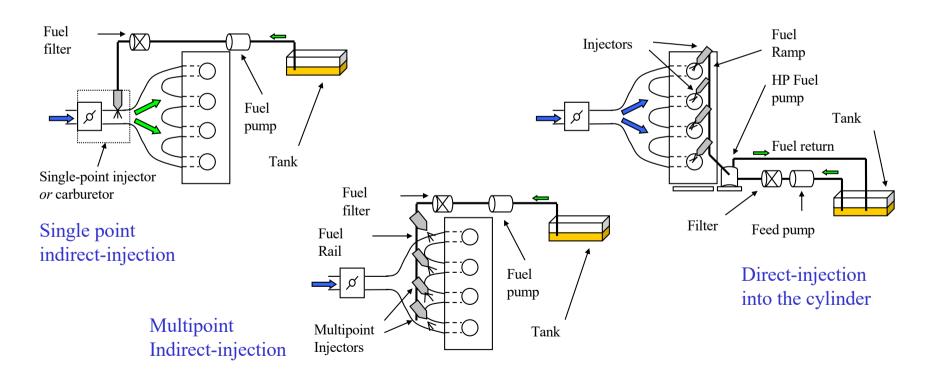
3) Exhaust circuit ⇒ COMBUSTION GASES


4) Lubrication circuit \Rightarrow OIL


5) Cooling circuit ⇒ WATER (internal) *and* AIR (external)

1) Intake circuit

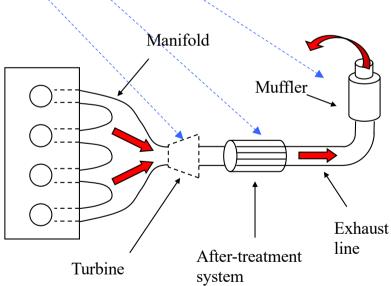
- air induction ensured by intake ports
- more and more coupled to a supercharged system (1 or 2 stages)



S.I.E. C.I.E.

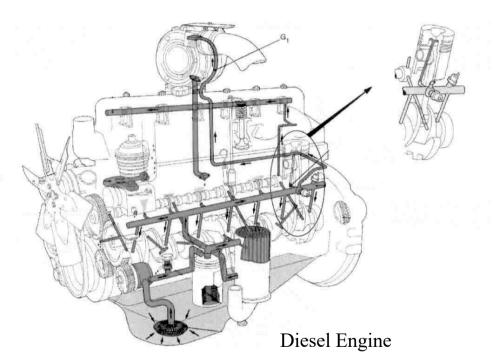
2) Fuel circuit

- intake of Air-Fuel mixture (Otto)
 - ⇒ indirect injection (w.r.t. the comb. chamber) IN the intake system
- or only air intake into the cylinder (Diesel)
 - ⇒ Fuel is <u>directly</u> injected INTO the combustion chamber



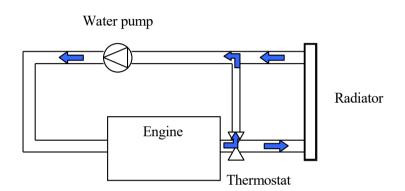
3) Exhaust circuit

In general, it contains:


- noise reduction system (☆ dB)
- exhaust gas treatment system!
- turbocharged system (turbine)
 - to drive the intake compressor

4) Lubrication circuit

- Oil tank or crankcase
- Feed pump
- Discharge valve (overpressure relief)
- Internal oil circuit
- External pipes
- Oil filter
- Heat-exchanger (oil-water)



5a) Internal cooling circuit ⇒ WATER

- water + additives: anti-corrosion & antifreeze (glycol)
- tank outside of the engine
- water pump
- water circuit (internal)
- thermostat (temperature control)
- external exchanger (heat evacuation)
 - ⇒ air-water *or* water-water

5b) External cooling circuit ⇒ AIR

- suppression of "water circuit" components
- heat release ensured by:
 - 1. cooling fins located on the cylinder head and cylinder block
 - 2. air circulation outside to the engine
 - ⇒ use the reserve for *on-board* application (airplane, motorcycles, scooters)

Content Chapter 1

- Introduction
- Description of the main components
- Operating principle
 - Mechanics of the reciprocating engine
 - Engine Cycles
 - Flows inside reciprocating engines

Classification

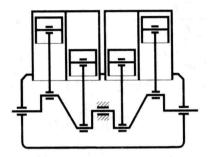
- Reciprocating Engines Families
- Kinematics of the piston

Classification Reciprocating Engines Families

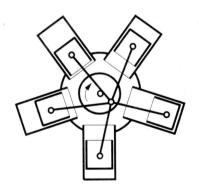
- 1) Thermodynamic cycle
 - 2-stroke cycle / 4-stroke cycle
- 2) Method of ignition
 - Spark ignition: <u>OTTO</u> or SI Engine (Spark Ignition)
 - Compression ignition: <u>DIESEL</u> or CI Engine (Compression Ignition)
 - Stratified charge ignition or SC Engine (Stratified Charge), FSI (fuel stratified injection), GDI (gasoline direct injection),...
 - Pilot injection ignition (of fuel oil or Diesel): Dual-Fuel
- 3) Type of fuel*
 - gasoline (petrol), fuel oil (Diesel fuel), natural gas, LPG, heavy fuel...
 - $_{-}$ specials fuels: alcohols (methanol, ethanol), vegetable oil, H₂, ...
- 4) Method of mixture-preparation / Injection system (p. 39)
 - Carburetor : mono or multi-body
 - Injection : single or multipoint, indirect / direct injection
 - High pressure injection system: Common rail, unit-pump, injection pump

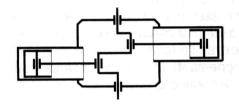
*Type of fuel:

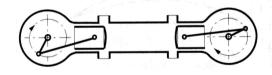
- 1. Volatile liquids (gasoline, alcohole, kerosene): homogeneous mixture with air, SIE
- 2. Gaseous (NG, LPG, biogas): mixed with air, SIE, more reduced ignition delay than liquids (=better)
- 3. Viscous, heavy, low volatility liquids: atomised droplets from fuel injector, CIE

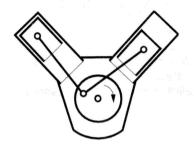

Reciprocating Engines Families (ctd.)

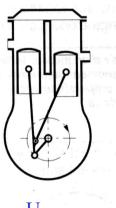
- 5) Air Induction
 - naturally aspirated engines: <u>atmospheric</u>
 - <u>supercharged</u> engines: turbocharger, turbocompounding, compressor...
- 6) Method of cooling
 - air cooled, water cooled
- 7) Method of lubrication
 - oil crankcase / dry-sump oil system ("dry" crankcase)
- 8) Basic geometrical design
 - Cylinder number: <u>single-cylinder</u>, <u>multicylinder</u>
 - Cylinder arrangement: L, V, B, W, X, U, O (p. 46)
 - valve train design: number of valves


camshaft design and location (OHC, DOHC,..)


• Cylinders arrangement (or type of design)

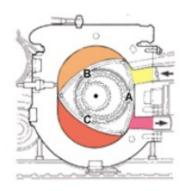

In-line: L (cars)

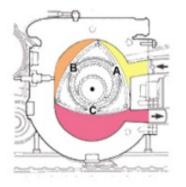

Radial: X (air cooling)

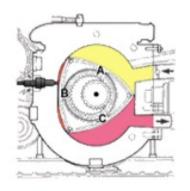

Flat opposed cylinder (Boxer) : B (saves on height)

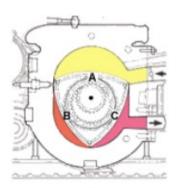
Flat opposed-piston : O (2-stroke, large engines)

V (lower gravity point)

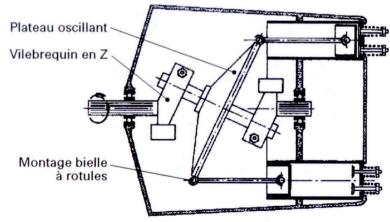


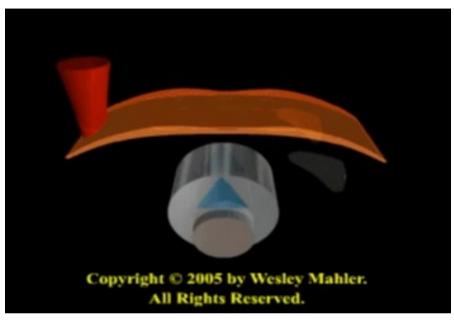


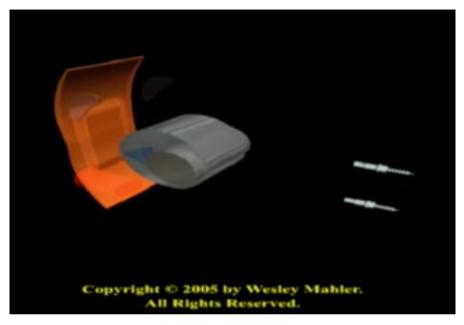

Classification



- Kinematics of the piston
 - until now ⇒ reciprocating engine
 But, don't forget...
 - Rotary engines (f.ex.: Wankel): only one component is in motion!







• **Drum engine** or axial engine:

Applications – some numbers

	2-stroke SI	2-stroke CI	4-stroke SI gasoline	4-stroke CI diesel	
Dvpmt drivers	Simplicity, cost	High power	Efficiency, emissions, speed	Emissions, efficiency	
Vehicles	50cc lawn mowers 100cc scooters (5 kW, 5500 rpm) 250cc motos (10 kW, 5000 rpm) Outboard boats	Ship propulsion 400-900 mm bore Up to 37 MW e.g. 800 mm bore, 1550mm stroke, 20 MW, 120 rpm	Cars 30-60 kW 4500rpm High power motos Small aircraft 400- 4000 kW, e.g. 18- cylinder 2 MW	Small: pump sets, compressors, drilling rigs. Tractors: 50 kW Jeeps, Buses, Trucks: 40-100 kW Construction machines: 200-400 kW Trains: 600 kW – 4 MW Marine: 100kW – 35MW Stationary power	
Characteristics	High fuel consumption (fuel scavenging loss, high speed)	Low speed, directly coupled to ship propeller, no gear		Versatility: 50-1000 mm 100-4500 rpm 1 kW-35 MW >100 kW: supercharged Vibrations High emissions	

Design & performance data

Brake mean effective pressure Brake specific fuel consumption

	Size	Strokes	Com- pression Ratio	Bore (mm)	Stroke/ bore	Max speed (rpm)	Max bmep (bar)	Weight/ power kg/kW	Best bsfc (g/kWh)
Compression-ignition Spark-ignition	small	2/4	6-10	50-85	0.9-1.2	4500- 7500	4-10	2.5-5.5	350
	cars	4	8-10	70-100	0.9-1.1	4500- 6500	7-10	2-4	270
	trucks	4	7-9	90-130	0.7-1.2	3600- 5000	7	2.5-6.5	300
	Gas engines	2/4	8-12	220-450	1.1-1.4	300-900	7-12	23-35	200
	Wankel	4	9	0.57 L / chamber		6000- 8000	10	0.9-1.6	300
	Cars	4	16-20	75-100	0.9-1.2	4000- 5000	5-7.5	2.5-5	250
	trucks	4	16-20	100-150	0.8-1.3	2100- 4000	6-9	4-7	210
	trains	4/2	16-18	150-400	1.1-1.3	425-1800	7-23	6-18	190
	marine	2	10-12	400-1000	1.2-3.0	110-400	9-17	12-50	180
Consumption decreases with larger size, hence efficiency increases, due to reduced heat losses and redu									n (lower speed)